Proc. of the 3rd International Workshop on Protocols for Fast Long-Distance Networks (PFLDnet), Lyon, France, February 2005.
LA-UR-05-7911

Routing and Scheduling Large File Transfers over Lambda Grids

Amitabha Banerjeg Wu-chun Fend, Biswanath Mukherjele and Dipak Ghoséat
t University of California, Davis
¥ University of California, Los Alamos National Laboratory

Abstract— In many application domains, there exists a need to G(V, E') denote an optical circuit switched network topology,
aggregate information from information repositories distributed \whereVV denotes a geographical end node @ndlenotes an
around the world. In an effort to better link these resources in a optical fiber between two nodes:(e),e € E denotes the

unified manner, middleware researchers put forth the notion of b f | th ilabl h fiber. Data fi
a grid. With this context applied to bioinformatics, we consider number of wavelengins available on each fiber. Lata files are

the problem of aggregating files from distributed databases to t0 be transferred from some of these nodes saercomputer
a (grid) computing node over a lambda grid. The challenge is at noded. Let f; ;,j € V denote these filed;| being the

to identify concurrent routes (i.e., circuit-switched paths) in the number of files at a nodeS(f; ;) denotes the size of each

lambda-grid network, along which files _should be tr_ansmitted_, file. The objective is to find thé following:

and to schedule the transfers of these files over their respective

circuits. 1) Route in the network along which a circuit should be
To address this challenge, we propose a hybrid approach that established to transfer each file. The route determines

combines off-line and on-line scheduling. The approach first
constructs an off-line schedule based on past profiling of transfer the virtual links (wavelengths) in the network required

rates. Then, as files are being transferred, the schedule is modified to ESt§b|i§h the circuit_ ' o
on-line, depending on the amount of time that it actually took ~ 2) The time interval in which the circuit should be estab-
to transfer the files. The objective is to minimize the total time lished, for the file transfer to take place.

required for data aggregation. To demonstrate the effectiveness of . .) .

our approach, we present experimental results using grid nodes ~ An algorithm for scheduling file transfer on a dedicated
running over an emulated lambda-grid topology. optical path, which considered allocation of varying bandwidth
levels for different time ranges was considered in [4]. Our

. INTRODUCTION . L I : . .
) S]) work considers routing in addition to time scheduling, which
Many emerging large scale scientific experiments involug,kes it more challenging.

distributed scientific computing. Large quantities of data may The protocol for data aggregation is as follows. The files

be fetched by a computational experiment from mUItipIﬁeeded for computations are first determined by shper-
information repositories spread geographically. A typical ex

. i L omputer The size of each file is queried from each data
ample is the “Genomes To Life” (GTL) application [1]. The P g

d lated diff f a biological center. Although a file of known size is being transferred
ata related to different aspects of a biological system ver a dedicated circuit, the file transfer time shows some

anglyzed, processedl, and s'tor.ed at different 'data Wa.rehOL{ﬁaer?ance because of the end host performance and thereby the
which are geograph|_cally d's.mbl.Jt.Ed' From time to time, g, control by the transport protocol. Hence, we consider
supercomputest a site of scientific experiments may nee redicting the circuit holding times based on previous profiles

to aggre_gateDd?ta from s?me .Of dthese tdatatyvarehogshes be CErfﬂe transfer rates. These predictions are used for developing
processing. Lala aggregation IS done atrun ime, and NenCeiN€qina schedule. This offline schedule depicts the route

network is the bottleneck in the computation. Even a single. o t.ansfer interval for each file ;. Let Tu(f,,) and

i i i i i i J s\Ji,j
second of idle time, during which data is bemg_ aggregat '(fi;) denote the start time and the end time respectively
represents th_e .lOS.'S.Of sever_al teraﬂops of computing POWET I the transfer of each filevirtual link reservations are then
Therefore, minimizing the time required for data aggregatiql,qe for this file transfer from nodg to noded over the

Is the key to imprpving th? overall system throughput. determined route, for the time interval(f; ;) — Te(fi ;). The

. Many optical C|r.cwt switched network; have been PrOVL tual transfer times are expected to differ from the predicted
sioned for supporting su,ch Iaige-scale d'St_r'bUted computingy, .o Therefore the file transfer schedule constructed by
Examples are CANARIE's C_A net_, Netherl.ight and Natlo_n he offline problem, is modified online as actual file transfers
LambdaRail [2]. Software is being developed for rapidl

provisioning an end-to-end lightpath for dedicated bandwid]; ceur. In this process, we take care not to afféiduial link
g) tions that | the offli hedule.
(referred to as “User Controlled Lightpath”), as and whe servations that were already made by the offline schedule

needed by an application [3]. Such networks which provi The primary objective is to minimize the total time required

)) . - r data aggregation, which we define as #wtual finish time
dedicated wavelengths for point-to-point connectivity have . L .
been referred to in the literature as lambda-grids. It should be note(_j that offlmc_e schedu!mg IS |mpo_rtant n

Our objective in this work is to device a model for Sucﬁ)rder to make the link reservations. Offline scheduling may

large-scale file transfers which may be required by GTIja-VOid congested links/ hotspots in the network, so it is very

like applications. The problem is formulated as follows. Le aluable. Thg other aItgmaUve would be o transfer as many
lles as possible at a time. The next file may be transferred

1This work was supported by a joint UC-LANL CARE grant. only after some links are freed due to the complete transfer

TABLE |

of a previous file. While this approach may be efficient for a
MACHINE CONFIGURATION

dedicated network, it is not appropriate in a shared network

where congestion may arise due to background traffic. Processor Intel Pentium IV, 2.80GHz for end-hosts,
Intel Xeon 3.06 GHz with dual PCMCIA bus
Il. OFFLINE SCHEDULING for dummynet.
. . Physical Memory 1GB
In our previous work [5]., we modelled t.he offlineamai Linux 2.4.27 Tor end-hosts,

scheduling problem as a Time-Path Scheduling Problem Free BSD v4.9 for dummynet

(TPSP). We showed that this problem is NP-complete, andine card Intel 1 Gbps Ethernet line cards

devised an Integer Linear Programming based mathematical TABLE II

model for an exact solution, and three heuristics to achieve STATISTICS OF TRANSFER TIME

approximate solutions. We showed that the heuristics yielded

. . . Statistics uDT RBUDP
f_avourable results in much Igss time complexity than the Max Transfer Time 1081 secl 3467 sec
linear program. Here we consider one of them, the Longest [Min Transter Tme 17.31 sec| 11.83 sec
File First (LFF) heuristic for offline scheduling. Average 17.87 sec| 14.47 sec

Standard Deviation 0.3 sec 4.35 sec
Range/ Mean % 139 % 157.8 %
LONGEST-FILE-FIRST (LFF) SCHEDULING St Dev. / Mean % 179 30 9%

This heuristic is based on the intuition that the longest file
(having the largest transfer time) is the bottleneck for schedul- S))
ing, because it requires more resources in terms of the amo@ff & Sample distribution of the transfer times using UDT, are
of time required to be free on the links, for it to be transferre§hoWn in Table Il and Fig. 2.

Therefore, the LFF algorithm aims at scheduling the longest
files first, so that they get priority on the network’s resources
and get scheduled earlier. For choosing the path over which
to transfer a file, the algorithm chooses the best path among link

K randomly chosen paths. The idea is to prevent one set of E ‘

1 Gbps I I

[
——= | link ‘ —

links from being selectively congested by files from a node, Sending dummynet Receiving
. host i i host
as would happen if we had always chosen the shortest path. o8 i o8

The steps are outlined below.

1) Choose the longest fil&' which has not yet been
scheduled. o

2) Find random K - alternate paths from the source node
of file F' to destinationd. Random K - alternate paths ® =
may be achieved by randomly picking the weights of
the links and applying Dijkstra’s algorithm to compute “ =
the shortest path [6].

3) Out of these K paths, find one in which file can be w [
scheduled at the earliest.

4) Repeat (1) until all files are scheduled. ® 1

The above algorithm assumes that file transfer times are

provided to us. However, it is difficult to predict file trans-

Fig. 1. Dummynet setup [8].

fer times accurately. A prediction framework based on past [H D -
transfer profiles was proposed in [7]. Various predictors such * - 174 115 16~ 171 178~ 178 180~ 101~ 182 104 105~ 107

. . . 174 175 176 177 178 179 180 181 182 183 185 18.6 198
as weighted average and median based predictors were sug- Time range insscands
geSted- Most pl’edlCtOI’S had average error margins of 6 — Fig. 2. Distribution of transfer times using UDT.

15% compared to measured transfer times. Our experiment§Ve observe that the distribution of transfer times is close to
using recently proposed protocols for large bandwidth-delaynormal distribution. In the case of UDT, although the stan-
product circuits yielded similar results. We considered twadard deviation is low {.3%), the range of observed transfer
different protocols, UDT [9], and RBUDP [10]. We tuned thdimes is quite high13.9%). The variations may be explained
protocols for the best possible transfer rates. A large file by the fact that UDT employs flow control and congestion
800 MB is transferred between two machines connected viaantrol mechanisms. Congestion control is not significant in
dummynet [8] shown in Fig. 1. The configuration of the thrededicated circuits. However flow control is important because
machines is shown in Table I. We restricted ourself to memorgt high transfer rates, the receiver buffer at the network line
to-memory transfers using RAMDisks, because we did noard is frequently overrun, because the multitasking operating
have access to high-speed disks. The transfer delay betwsgstem is sometimes not scheduled for transferring data from
the two machines is set to be 50ms using the dummynet. Tthe buffer to the memory. We observed that as the system
statistics of the 200 file transfers using UDT and RBUDHRpyad on the receiver is increased, more packets are dropped at

the receiver buffer. We also observed a couple of instancesifodi circuit is indeed modified to start earlier than its scheduled
transfer time being much greater than the mean (in the rarigae, the end time is kept the same. Thus the circuit holding
19.7 — 19.8 secs). RBUDP exhibits a much higher standaidhe will increase. This may help providing more margin for
deviation and range. When the error rate at the receiver buféer incomplete file transfer event.
is high, RBUDP cannot recover because it doesn't employ flowCase II: Incomplete File Transfer:
control. Hence, a large number of retransmits occur. We assume that the holding time of the current circuit may not
Since circuits are reserved in advance for file transfers, Wwe extended, as the virtual links may be reserved for transfer
would like the circuit holding time to be larger than the actualf a different file of the same application or for a different
file transfer time, so that we do not have to establish anothaplication. In case of the former, although the transfer of the
circuit in future to transfer the same file. The most conservativext file may be delayed, it delays the entire offline schedule.
approach would be to take the largest transfer time (or lowestFor incomplete file transfers, two different options are
transfer bandwidth) out of past profiles of file transfers asvailable. The first is to retransmit the whole file after es-
the circuit holding time. Although this would guarantee thagblishing a new circuit. The second is to transmit only the
almost all files are transmitted within the circuit holding timeremaining portion of the file which could not be transmitted.
it may lead to poor circuit utilization. On the other hand, takinghe former is simple to implement and also does not require
a more aggressive estimate like mean of past transfer tineay application level fragmentation and reassembly of file
would lead to a large number of files not being delivered ibomponents. However, the time duration in which the file
their allocated times. The choice of prediction of the circuias being originally transmitted is completely lost. The latter

holding time is therefore important. requires marking of correctly transmitted sequence numbers
We discuss the various prediction strategies after discusshng the transport protocol, so that retransmission may begin
the online scheduling from the last marked window. In this work we study the former
approach, and plan to discuss the latter if our work is accepted
I1l. ONLINE SCHEDULING for presentation at the workshop. We note that both approaches

As discussed above, when a file is actually transferred figquire establishing a new circuit and hence require new virtual
accordance with the offline schedule, two scenarios may ocdiftk reservations to be made.
Either the file is fully transferred within the circuit holding Algorithm Incomplete _File_Transfer (File_Number)
time (Early Finish), otherwise it is not fully transferred 1) In the lines of the LFF heuristic, choodé€ different

(Incomplete File Transfer). paths along which this file may be transmitted.
Case |: Early Finish: 2) The predicted transfer time is chosen as the highest
The present circuit may be torn down. Thietual links which transfer time (or lowest transfer bandwidth) of past

this circuit was using are now free. There may be future transfer profiles. The idea here is to avoid an incomplete

circuits in the offline schedule which use some of these links. transfer again.

Since these links had already been reserved by the curren8) Determine the path along which the file may be sched-

application, the future circuits may be pulled back in time, uled at the earliest. Add this to the offline schedule.

so that the corresponding file transfers begin earlier than they IV, RESULTS

were scheduled in the offline schedule. This helps improve :

link utilization and reduces the total time required for data e consider the topology depicted in Fig. 3 for our

aggregation. The algorithm which is invoked for each filgimulations. This topology is the DoE UltraScienceNet [11]

transferred ear|y, is presented as follows: Superimposed on the National LambdaRail (NLR) network
Algorithm Modify _ScheduleEarly _Finish [2]. Major DoE sites are connected to the nearest network

(Circuit, Actual_Finish_Time, Scheduled_Finish-Time) Points of presence (PoPs) with 1 Gbps links. The network

/I All three parameters above refer to the file transferred eaBackbone (shown in bold lines in the figure) may carry 2 1-
1) Consider a particular virtual link on th@ircuit. Gbps connections on two different wavelengths along each

2) If a file transfer is scheduled to begin &ched- physical link. We not_e that _the above are s_ample numbers
uled.Einish.Time on this link: for the purposes of illustration, a lambda-grid may have a
. . . L. much higher number of wavelengths per physical link. We
a) Identify _other V|r_tual links for this file. consider the supercomputer node to connected to the Houston
b) Check if this file may be _sphedqled to Starff’oP, and assume that the supercomputer may receive 6 1-
transfer bet.wgen Acwal’meh’rlme and Gbps connections simultaneously on different wavelengths, so
Scheduled Finish-Time on these links. Ifyes, 54 there is no bottleneck between the supercomputer and the
m_odn_‘y the offline schedule to start file transfer hetwork. We assume that background traffic is absent, because
this time. our objective is to demonstrate the performance of the online
3) Repeat above steps for all virtual links in t@&cuit. algorithms.
It should be noted, that the above algorithm does not alterFiles are of sizes uniformly distributed from 400 MB to
the virtual link reservations which had been made by tf80 MB, and are randomly distributed across the DoE sites.
offline schedule, it only alters the circuit start times. Moreove¥We limit our maximum file size to 800 MB because of

PNNL TABLE Il
RESULTS FORTRANSFER OF30FILES.

o o Predictor TOffavg TFinpras NRyraw | TFinggin NRyrin
BN m 90.5 200.9 23 130.5 16
nerse m 4o 91.4 154.6 18 89.7 1
SLACO ILab m+1.250 | 91.6 150.4 16 94.2 5
m + 1.50 91.8 151.6 15 90.5 4
e— Backbone NLR m+1.750 | 92.1 139.0 6 91.2 2
A o Backbone DOE m + 20 92.5 92.1 4 90.7 2
A Ultrascience Net m + 2.50 93.2 92.5 4 91.2 0
. Distances in miles m+ 30 93.8 93.0 0 92.0 1
oo supercomputer TABLE IV
Fig. 3. Topology used for simulation [2], [11] RESULTS FORTRANSFER OF50 FILES.

the limitation of using only memory-to-memory transfer-predictor | Tos7,.. | 1rinsras | NEaras | 2 Finarin | NRari

All files are transferred using the network backbone to then 134.8 258.4 44 2218 34
supercomputerThe transport protocol that we use is UDT_" 11025 ﬁg‘i’ igg-g ig iggg 411
[9], tuned approprlately for performance in the bandwidth T 150 1377 1773 3 1408 5
delay product settings that we have here. m+1.750 | 1384 167.9 8 135.0 0
For prediction of circuit holding times, we maintain the m +2¢ 1394 137.1 2 136.5 0

; - ; don+ 250 | 139.6 1375 0 136.8 0

transfer profiles at each transmitting node (DoE site) for fi o I8 1560 5 75 5

transfers to thesupercomputerSince transfer rates may varym: Mean, o Standard Deviafion,
across file sizes and file transfer times may not be lineamyedictor: Predicted value of Circuit Holding Time.
extrapolated with file size [7], we maintain different profile?,‘fffavg ' fverage offiine schedule firtsh time (secands).

. - . - .. TFiny,, - Minimum observed actual finish time in 10 transfers (seconds).
a.t Interva|S Of 100 MB n f|le Slze. W'th'n the 100 MB f”e NRZMz‘,n - Number of retransmits for the occuranceﬂ‘inhjin_
size range, the prediction of time is linearly extrapolated. Ot ,,.: Maximum observed actual finish time in 10 transfers (seconds).

prediction algorithm considers the past 50 file transfers. W&aa. - NUmber of retransmits for the occurance @i, -

consider different predictors, the predicted value being vari@dyo humber of incomplete transfers are high, as it happens
by considering different numbers of standard deviation awgyan some of the lower predictors are chosen, theratheal

from mean, which would correspond to the upper limit Ofish timeincreases significantly. ’

a confidence interval in a normal distribution. Our objective Hence, a predictor which achieves a reasonable number of
IS to predict circuit hoIr:ilng tlmes, Wh'Ch, lead to Completfﬁﬁcomplete transfers is appropriate. From the above results,
file transfers for most files, without leading to poor circuil o find that the predictors: + 20, m + 2.50 andm + 3¢
utilization and compromising on thactual finish time give the desired values attual finish timesComparing these

Once the offline schedule is computed from the predictgfhee predictors, we find that out of them, the highest predictor

values using the LFF heuristic, the corresponding file transf% + 30) does not lead to the besictual finish time The

events are generated in a Java based discrete event simulgiar. Modi fy_Schedule_Early Finish algorithm tries to
For each file transfer event, a file of the same size is transferﬁm back circu{t start tim;es in célse of early finish. But since
between two end hosts via the dummynet. The delay in the.q are sent along different links, if all the links required for
dummynet router is set to be the exact end-to-end link delg)fs tansfer of the next file are not available, the file cannot be
as would be if a circuit were established in the network. We.peqyled earlier. Hence, long circuit holding times may lead

use the link distances in th_e topology in F_ig. 3 to compute tI?S poor link utilization, and may create congestion for another
link delay. Thus our experimental setup is a close reflectigfl, {;ansfer
\ :

of what would happen in an actual circuit setup. Once the

file has been transferred, the transfer time is measured. The V. CONCLUSION

online algorithms mentioned above are invoked thereafter to o .

reconfigure the offline schedule. Our results for the transferOur aim in this work has been to present a complete

of 30 and 50 files for different predictive schemes are shovVﬁCture of transfer of large files over a backbone network for

in Table Il and Table IV, respectively. For each predictivg large-scale scientific computation application like GTL. We

scheme we considered 10 different iterations of experimen%esent a hybrid approach that combines offline and online

Of particular importance are the maximum and minimur’ﬁChedu”ng‘ We then demonstrate the effectiveness of our

actual finish timefor each predictive scheme algorithms by performing a hardware based simulation which

As expected, using a higher prediction, leads to highgpsely approximates an expected real scenario.

offline schedule finish time. The results above show that a
limited number of incomplete file transfers does not have an _ _ _
adverse effect on thactual finish time This is because the [l “Genomes To Life requires new life from Networks,’

. . Department of Energy (DoE) (United States) Workshop, 2003,
offline schedule generated usually has some links free, and thep . /uww.csm.orml.govighpn/igenomek2003.pdf

incomplete files may be transferred using these links. Howevpi, National LambdaRail Inc. at http://www.nlr.net

REFERENCES

[3] “CANARIE demonstrates first-of-its-kind software” at
http://www.canarie.ca/press/releasesi®425.html

[4] M. Veeraraghavaret. al, “Scheduling and transport for file transfers on
High-Speed Optical CircuitsProc. PFLDnet 2004, Chicago, USA

[5] A. Banerjee et. al, “A Time-Path Scheduling Problem (TPSP) for
aggregating Large data Files from Distributed Databases using an Optical
Burst-Switched Network”Proc. ICC 2004, Paris, France

[6] T. Cormen, C. Leiserson, R. Rivest and C. Stein, “Introduction to
Algorithms,” Second Edition, MIT Press, 2001.

[7] S. Vazhkudai, J. Schopf, and I. Foster, “Predicting the Performance
of Wide Area Data TransfersProc.of IPDPSI 2002, Fort Lauderdale,
Florida, USA

[8] L. Rizzo, “Dummynet: A Simple Approach to the Evaluation of Network
Protocols,” ACM Computer Communication Review, 1997.

[9] Y. Gu and R. Grossman, “UDT: An Application Level Transport Protocol
for Grid Computing,”"Proc. PFLDnet 2004, Chicago, USA

[10] E. He, J. Leigh, O.Yu, T. A. DeFanti, “Reliable Blast UDP : Predictable
High Performance Bulk Data TransfeRroc. IEEE Cluster Computing
Chicago, lllinois, 2002.

[11] DOE UltraScience net testbed at http://www.csm.ornl.gov/ultranet/

